From Massive Parallelization to Quantum Computing: Seven Novel Approaches to Query Optimization
نویسنده
چکیده
The goal of query optimization is to map a declarative query (describing data to generate) to a query plan (describing how to generate the data) with optimal execution cost. Query optimization is required to support declarative query interfaces. It is a core problem in the area of database systems and has received tremendous attention in the research community, starting with an initial publication in 1979. In this thesis, we revisit the query optimization problem. This visit is motivated by several developments that change the context of query optimization. That change is not reflected in prior literature. First, advances in query execution platforms and processing techniques have changed the context of query optimization. Novel provisioning models and processing techniques such as Cloud computing, crowdsourcing, or approximate processing allow to trade between different execution cost metrics (e.g., execution time versus monetary execution fees in case of Cloud computing). This makes it necessary to compare alternative execution plans according to multiple cost metrics in query optimization. While this is a common scenario nowadays, the literature on query optimization with multiple cost metrics (a generalization of the classical problem variant with one execution cost metric) is surprisingly sparse. While prior methods take hours to optimize even moderately sized queries when considering multiple cost metrics, we propose a multitude of approaches to make query optimization in such scenarios practical. A second development that we address in this thesis is the availability of novel software and hardware platforms that can be exploited for optimization. We will show that integer programming solvers, massively parallel clusters (which nowadays are commonly used for query execution), and adiabatic quantum annealers enable us to solve query optimization problem instances that are far beyond the capabilities of prior approaches. In summary, we propose seven novel approaches to query optimization that significantly increase the size of the problem instances that can be addressed (measured by the query size and by the number of considered execution cost metrics). Those novel approaches can be classified into three broad categories: moving query optimization before run time to relax constraints on optimization time, trading optimization time for relaxed optimality guarantees (leading to approximation schemes, incremental algorithms, and randomized algorithms for query optimization withmultiple costmetrics), and reducing optimization time by leveraging novel software and hardware platforms (integer programming solvers, massively parallel clusters, and adiabatic quantum annealers). Those approaches are novel since they address novel problem variants of query optimization, introduced in this thesis, since they are novel for their respective problem variant (e.g., we propose the first randomized algorithm
منابع مشابه
BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملParallelizing Query Optimization on Shared-Nothing Architectures
Data processing systems offer an ever increasing degree of parallelism on the levels of cores, CPUs, and processing nodes. Query optimization must exploit high degrees of parallelism in order not to gradually become the bottleneck of query evaluation. We show how to parallelize query optimization at a massive scale. We present algorithms for parallel query optimization in left-deep and bushy pl...
متن کاملA New Model Representation for Road Mapping in Emerging Sciences: A Case Study on Roadmap of Quantum Computing
One of the solutions for organizations to succeed in highly competitive markets is to move toward emerging sciences. These areas provide many opportunities, but, if organizations do not meet requirements of emerging sciences, they may fail and eventually, may enter a crisis. In this matter, one of the important requirements is to develop suitable roadmaps in variety fields such as strategic, ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016